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Calculation of the phase behavior of lipids
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Department of Physics, Box 351560, University of Washington, Seattle, Washington 98195-1560
(Received 17 December 1997

The self-assembly of monoacyl lipids in solution is studied employing a model in which the lipid’s hydro-
carbon tail is described within the rotational isomeric state framework and is attached to a simple hydrophilic
head. Mean-field theory is employed, and the necessary partition function of a single lipid is obtained via a
partial enumeration over a large sample of molecular conformations. The influence of the lipid architecture on
the transition between the lamellar and inverted-hexagonal phases is calculated, and qualitative agreement with
experiment is found.S1063-651X98)14605-§

PACS numbegs): 87.15-v, 64.60—i

I. INTRODUCTION with other phenomenological terms to complete the descrip-
tion [8].

Lipid bilayers form the framework of biological mem- Simulation of chemically realistic models of lipids and
branes. Nevertheless, almost all membrane lipids adopt  their interactions have been carried ¢14], and yield valu-
bilayer configurations, either in their pure state or in lipid able information about local properties, such as density and
mixtures, under conditions close to physiological ofigg].  orientation profiles in the bilayer, lamellar phase, and dy-
Although cubic phases are also fouffd3], the most com- namic and transport properties. However, simulations are
monly occurring nonbilayer arrangement is the inverted-both demanding computationally and limited to a rather
hexagona[4], or H,,, phase in which a matrix of hydrocar- small number of particles. Within the framework of chemi-
bon tails is pierced by a hexagonal array of water-filled tubesally realistic models, the simulation of phase transitions be-
lined by the hydrophilic head groups. Why biological mem-tween different morphologies seems not to be feasible at
branes should contain lipids that tend to drive them towardgresent.

a configurational instability, much like a lamellar-hexagonal ~Analytic, mean-field approaches combined with micro-
transition, has been the subject of much speculation centegcopic modeling of the tails of lipids have been applied with
ing on the role such instabilities might play in promoting success to the manner in which the tails pack in the interior
membrane fusion, and controlling membrane permeabilityf aggregate§15—-17. The contribution of the chains to the
[2,5]. As a consequence of this interest, there have beesingle-lipid partition function, required by mean-field theory,
many studies of the phase behavior of lipids in general, anés obtained from an enumeration of the molecular conforma-
of the parameters that affect the lamellar to hexagonal trartions of the tails permitted within the rotational isomeric
sition, in particular[6—10]. For example, in a homologous state(RIS) model[18]. It is here that the particular architec-
series of saturated diacyl or diakyl phosphatidylethanolature of the chains enters. Bilayer thickness is set by assump-
mines, an increase of chain length stabilizes khephase, tions on a phenomenological free energy describing the
causing the transition temperature between it and the lamehead-group region. These calculations reproduce many fea-
lar phase, which exists at lower temperatures, to decfése tures of the density profiles and segment orientations in the
Conversely an increase in the volume of the head group staaterior of aggregates.

bilizes the lamellar phade,, causing the transition tempera- ~ The contribution of the lipid tails to thel;, phase has also
ture to increase, as clearly demonstraf8Hin mixtures of ~been examined by these medd$)], and it was shown that
dioleoylphosphatidylethanolamine (DOPE and dio- their entropy always favors this phase over the lamellar one.
leoylphosphatidylcholinéDOPQ. An increase in water con- It was also observed that a change in the area per head group
tent also tends to stabilizd, . could lead to a transition to the lamellar phase. No solvent

A qualitative understanding of these results is provided bywas included explicitly, but as its effect would be to alter the
a characterization of the lipid as a simple geometrical objecarea per head group, the observation indicates that variation
parametrized by the chain volume, the maximum chairPf solvent concentration would be able to bring about a tran-
length, and the head-group argHl]. The different phases sition. The calculation is an approximate one by necessity
result from simple geometrical packing considerations. Inbecause it is carried out in real space. The fildmm sym-
contrast to simplifying the description of the lipid, large- metry of theH, phase is not preserved, as the tubes are
length scale approachf®,12] simplify the description of the considered to be cylinders on which the area per head group
bilayer itself, reducing it to an infinitesimally thin membrane is uniform. Further, the packing constraints in the interstices
characterized by elastic constants which are inputs to theetween the tubes cannot be satisfied exactly. Application of
theories[13]. Often, elements of such theories are combinechis real-space approach to such complicated morphologies

asla3d would be extremely laboriou0].
In this paper, we overcome the difficulties of a real-space
*Present address: InstitutrfRhysik, Johannes Gutenberg Univer- approach by combining the above enumeration techniques
sitat, D-55099 Mainz, Germany. with recent advances in the solution of mean-field equations
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of polymers[21,22], a combination which we had previously
shown to be fruitful in a relatively simple systdr@3]. Here

we apply it to a more complicated system, a minimal model
of a lipid and solvent mixture, one that treats the head group
on the same microscopic basis as the tails. We are able,
thereby, to obtain its phase diagram within mean-field theory
and to examine how the boundary betweep and H,
phases changes with lipid architecture, i.e., how that archi-
tecture affects the stability of the lamellar phase. Our results
are in qualitative agreement with experiment.

Il. MODEL AND NUMERICAL SELF-CONSISTENT
FIELD TECHNIQUE

M. MULLER AND M. SCHICK

HPp, Py, s, Wy, Wi, W, IT]
kgT

s A
N_S_NL In N_L

= ———Ngln
S Vs

keT
xf dr{whq>h+wtq>t+vvsq>s

+11 (2.6

1-0.— "o vtqn)
svshvst-

In this expressionQ, denotes the single lipid partition

function in the external field$V, and W,, acting on head

We describe the lipid as consisting of a tail, comprised ofand tail segments, an@g the solvent partition function:

any number of chaingusually twg containing altogether a
total of N identical segments of volumeg each, and a head
containing two segments of volumsg,/2 each. The solvent
molecules have volume, but are otherwise without struc-
ture. The partition function of the mixture &f_ lipid mol-
ecules and\g solvent particles in volum¥® can be written
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where« and 8 take the values, t, ands. The incompress-
ibility condition,

Uh Ut
D (r)+ U—(I)h(r)+ U—CI)t(r)Zl, (2.10

can be used to eliminate the solvent volume fractanin

E

are the dimensionless number densities of the head and tl?
tail segments, and

g.(2.9. The terms linear in the head and tail volume frac-
{ons that result from this procedure can be ignored, as they
only contribute to the chemical potentials of the heads and

tails. At this stage we neglect the coupling between the mo-

Ng
cbszus}_)l S(r—"ras (2.4)

lecular conformations, the local fluidlike packing of molecu-
lar segments, and the local energy density and assume that

all interactions are contact interactions,

is the dimensionless number density of solvent particles. The
fluid has been treated as incompressible. The probability dis-
tribution of the lipid configurations is denot&]r ,], and the
interaction energy between particleséis

It is convenient to introduce auxiliary fields and consider

Vap(r=r') =€ 50(r—r"). (2.1)

With these simplifications, the energy can be written in the
form

the particles to interact with one another via intermediate, &, ,®,] 1 . ) 4 )
fluctuating fields rather than directly: TkeT 0. f dr{xn®n®:— 2 xnn®h— 2 X0 Pt}
(2.12
f
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The functional integration in Eq2.5) cannot be carried
out explicitly. Therefore we employ mean-field theory,
which approximates the integral by the largest value of the
integrand. This maximum occurs at values of the fields and
densities that are determined by extremizifigvith respect
to each of its seven arguments. Fluctuations around these gig 1. schematic drawing of the lipid architecture of our
most probable values are neglected. These values are d@ndel. The specific volumes of the head and of a single tail seg-
noted below by lower-case letters. They satisfy the selfment arev, andv,, respectively. The distance between the tail
consistent equations segments i®, and that between the two segments of the heatd is

Wh(1)=Xntde(1) = Xnndn(r) + 7(NDonlvs,  (2.16 The partition function of a single lipid in an external field
_ _ cannot be obtained analytically for a realistic architecture.
W)= Xnedn(N = xud D+ m(Dodvs, (21D hoefore we approximate the noninteracting single lipid

wy(r)=(r) 2.18 probability distribution’? by a representative sample &f
S ' ' single lipid conformations. Assigning the Boltzmann weight
1= (1) + dn(rvnlvst dy(rvlus, (2.19 \(;)V; tgngz\a,\irj lipid conformation in the field of mean potentials
Nivs 69, 2 N
én(r)=— : (2.20 1
QL &Nh(r) w.=€eX _Ek Wh'ki hgl fk(rc,h)+wt,kt:21 fk(rclt) s
NLU 5Q|_ (223
t(N==—75- )’ (2.21) | |
L t we obtain from Eq.2.21) the components of the tail seg-
. Nev. 8Os 092 ment density,
S QS &Ns(r) . . Eﬁilch{\Llfk(rc t)
bek=dna % —, (2.29
Because the overall density is fixed, we can fét 7 (r) ' ' DIASPYON
=[drwg(r)=0. The mean-field free energyF
=T bn. by, bs.Wh W; ,Wg, 7] iS and obtain similar results for the head segment density. The
self-consistent equations, expressed in the bgkis, are
veF Ogvs Q vg solved by a Newton-Raphson-like method. Finally we mini-
VkgT $sIn ¢st b In ¢ —dsIn———¢ In— mize the free energy with respect to the size of the unit cell,
D. To this end we translate the lipid conformations so as to
1 achieve a uniform distribution in the cell.
Ty f dr{— Xxnen(r) de(1) + 3 xnndh(r)
Ill. RESULTS
+3xudi(N}, (2.23

The above scheme is applicabledtbitrary lipid archi-
where we have denoted,=Ng/V, the average, dimen- tecture and symmetry of spatial ordering. We have applied it
sionless, number density of solvent, and similagy  to model monoolein, a fatty acid whose phase behavior in
=N_vs/V, for lipids. water has attracted much intergsd,24. A schematic sketch

In order to study the self-assembly of lipids into variousof the architecture is presented in Fig. 1 to illustrate the
morphologies, we expand the spatial dependence of the dearchitectural parameters of our model. The single hydrocar-
sities and fields in a complete set of orthonormal functionshon tail containdN=17 units, a distance’=1.53 A apart,
{fi(n)}, V7 1fdrfif,= 38y, f1=1, which possess the sym- with a double bond between the eighth and ninth units. The
metry of the morphology being considerg2il]; e.g.,¢n(r)  volume of the tail units is,=29 A3. The trans-gauche en-
=2kédnkfk(r). The coefficientspy, 1, ¢ 1, andeg, are sim-  ergy difference is taken to be 500 cal/mol. We take the two
ply equal to the average, dimensionless number densitiasits of the head and the first segment of the tail to be col-

én, ¢, and ¢g, respectively. The solvent densigs(r) linear, with a distancel between the head units, and a dis-
= s 1V exg—wgr)]/fdr exd—wyr)] can be Fourier ex- tanceb between the first tail segment and the adjacent head
panded aspg = ¢ 1(eXPSy1/(eXPS); 1, With unit. We set all interactions to zero save those between hy-
1 drophilic and hydrophobic entities, and they are taken to
_ have the same strength Thus from Eqs(2.13-2.15%, xnn
Skm=— W—J’drfff. 2.2
(Sn==2 Wang | drfifafm. 228 L evukeTod =y, and xum x(weon/(207).
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Typically, between 524 288 and 2 097 152 conformations of
single lipids were generated. The position of the head was 1850 1 K/“ DIS
chosen uniformly distributed over the unit cell, with a ran- 852 b\
dom orientation. The tail was then constructed according to
the rotational isomeric stat@&IS) model[18]. The tail con- —,  -1.854 ¢ H,
formations were generated at a temperature of 300 K, so that <§ 1856 |
they are fluid. =
We use up to 32 basis functionfg(r). Because the cal- T st A e
culations involve the contributions of each individual lipid to la3d \\ /ﬂ’"
the Fourier component of the density, the required computer Rl SN :
memory scales like the product of lipid conformations and -1.862 ° . : .
number of basis functions. The program needs more than 1 00 02 04 06 08 10
Gbyte memory. We employ the massively parallel CRAY X

T3D/T3E computer and distribute the lipid conformations _ :
among the processors independently of their spatial position._FIG' 2. Free energies at %(_0'25 of the disordered..,
Each processor evaluates the contribution of its assignel@3d: andH, phases as function of the solvent content. For con-
lipid conformations to the Fourier components of the density’€"ence. the teMucoexps/keT has been subtracted from the di-
according to Eq(2.26. The partial results are collected via Mensionless free-energy densftywhereuoexis the chemical po-
shmemroutines. The first processor also calculates the SOIEential at which solvent-rich and solvent-poor disordered phases
vent densit aﬁd therefore we assian it a smaller number 0\?/0U|d coexist were there no stable ordered phases. The dotted line
.. Y, ar 9 . shows the Maxwell construction between thg and the solvent-
lipid conformations to compensate for the additional work . .

. rich disordered phase.
load. Typically between 32 and 128 processors have been

employed in parallel. The program scales linearly with the ) ) i
number of processors. hexagonal and lamellar morphologies to investigate the ef-

d//=0, andb//=1. Thus the head is a relatively small, OUr principal interest here. _
single, interaction center located the same distance from the The calculated phase diagram of the system, excluding
first tail segment as each tail segment is from its neighbor&€ cubic phases, is shown in Fig. 3. Its salient features are
on the chain. The ratio of solvent volurpg to lipid volume ~ Similar to those of the experimental monoolein-water mix-

v;=vp+ Nv, determines the extent to which the microstruc-tUré [10,24, and other lipid, solvent mixturg25]. The H,,

ture can be swollen. Small solvents tend to swell the microPhase tends to exist at higher temperatures and water con-
structure due to their large translational entropy, wherea§entrations than does the, phase. Upon swelling thel,
large solvents favor phase separation. The phase diagram‘@éth solvent at lower temperatures,.a Wgak fwst-order Fransp
determined by calculating the free energy of the differention to another lyotropic phasd., in this calculation is
morphologies as a function of the solvent concentration angncountered, while at higher temperatures, a strong first-
the “temperature” 1. Phase coexistence is determined byOrder transition to a disordergdIS) solvent-rich phase is

equating the chemical potential, seen. These features are all in agreement with experiment.
The effect of lipid architecture on tHe, ,H,, transition is
IF v F shown in Fig. 4. In(a), we see that at fixed temperature

(3.2 1/x=0.25, the solvent concentration within the narrow co-
existence region betweeh, and L, phases, shown by
squares, increases with increasing tail length, while the tem-
perature on the phase boundary at fixed concentraggn,
=0.185, shown by circles, decreases. Thus lengthening the

K= 9N Vagy'

and the Gibbs free energy,

G F
S_F_ £ 3.2
V V. v
in the two phases. For a representative value of the tempera- 05 | DiS
ture, 1,=0.25, we find the sequence of dimensionless free-
energy densitiesf=vF/VkgT, shown in Fig. 2. It follows 04
from this sequence that, with increasing solvent concentra- = Two-Phase
tion, there is a transition from the disordered phase tdthe - 03 | Coexistence |
phase, and from that to tHa3d cubic phase. At larger con-
centrations, the lamelldr, phase competes with coexistence 02|
between water-rich anth3d phases. This is in accord with
the phase diagram of monooldih0,24]. 0.1

Having determined that the3d phase does occur in our
calculation, we do not consider it further. A large number of
basis functions is required to determine its free energy with FIG. 3. Phase diagram of the model with/vs=1, vy/vs
sufficient accuracy to determine its phase boundaries. Fu=3.2, d//=0, b//=1. The stability region of cubic phases is not
ther, it is sufficient to restrict ourselves to the inverted-included.

L
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tail segments N FIG. 5. Packing parameter for the lamella, and inverted-
0.21 . . . hexagonaH, phase as a function of the solvent concentration for
1/x=0.25. The vertical line marks solvent composition at which
020 F (b o the transition occurs.
019
=] d —
018 | o 0.27 ahex:Z(vh-i-Nvt) 2_77( -+ (1 d)s)vh)
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& 017 } 8 3
016 F 1025 inverted-hexagonal phas¢3.4)
015
o . " .
There is a transition from an inverted-hexagonal to a lamellar
0.14 } . . : .
o phase upon decreasing the packing ragiorhe molecule is
0.13 . . i 0.23 pictured as a wedge with the tails constituting the bulkier
3.0 3.5 40 45 5.0 part. An increase of the head-group volume or decrease of
head group size v, the hydrocarbon tail length reduces the effective wedge

shape of the molecule, and therefore tends to stabilize the
FIG. 4. Influence of lipid architecture on the lamellar to inverted lamellar phase.
hexagonal transition. The squares denote the degsitglong the The occurrence of a transition upon increase of the sol-
coexistence curve at fixed # 0.25, whereas the circles represent yent content is understood as due to the swelling of the area
the .tra.msitioln temperatgre)(l/at fixed compps?tionbs.:o.185.(a) per head group, which also reduces the effective wedge
Variation with the chain lengtiN. (b) Variation with the head  ghape of the molecule. The results of our self-consistent field
group sizévy, . calculations are displayed in Fig. 5. Calculating the packing
parameter from a microscopic model, we find that it de-
creases upon adding solvent, and takes a value between 0.5
] - ] ] ) and 0.65 at the transition from the inverted-hexagonal to the
tail stabilizes theH, phase, in agreement with experiment gmellar phase. From the simple packing arguments, one
[4]. The tails in this calculation were taken to be fully satu-\yoyld have expected its value to exceed unity at the transi-
rated so that there would be no effect of the relative pIaCEtion_ This discrepancy On|y illustrates that the phenomeno-
ment of the double bond. The effect of changing the headtogical parameters of the packing model are related but ap-
group volume is shown iffb), and it is seen that increasing proximately to the geometrical parameters of the molecule.
the volume of the head group destabilizes thg phase, Along theH,, L, transition, we find that the ratio of the
again in agreement with experimdi. lattice constants of the two coexisting phasesDis/D
A posteriori this behavior can also be rationalized in the ~1.10, rather close to the value of 1.16 extrapolated from
framework of packing models. The morphology is controlledthe experiments on monoole[i0]. However, the absolute
by a packing parametey=v,/al., wherea denotes the area Vvalues of the lattice spacings are smaller than the experimen-
per head group antl, the maximum extension of the lipid tal ones. Thg Iattgr am®, =42 A while we obtain 20 A. This
tail. We setl.=+\(RZ)=15.1 A, where(R?) is the en- small value implies that the head groups are separated by a
semble average of the square of the distance between ti§Y thin water layer, and that hydrocarbon tails originating

head unit and the last tail segment. The area per lipid tail caﬁom different monolayers interdigitate significantly, a short-

: o : _coming encountered in other calculatiof6]. By making
gi?jgiatlitggst-o the repeat distarevia simple geometric con the head group bulkierd//=6, and adjusting the head-

group volumev,,/vs=8.5 such that the transition occurs at

the same solvent density, we increase the calculated result to

(et N D,=28 A. Extending the head group still further, to take

alam:M lamellar phase, (3.3 account of their_hydration shell, would improve the agree-
D(1-¢s1) ment with experiments.
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IV. DISCUSSION We have also ignored fluctuations, which are expected to

We have explored the self-assembly of monoacyl lipids inshlft the phase boundaries to somewhat lower temperatures

solution employing a microscopic model. The model de_and, by inducing effeptiye repulsions between interfaces, to
. . ) ' enlarge the characteristic length scale of the phases. Because
scrlb_es th‘? archlt_ecture of the tail very well, by means of theof the extended molecular architecture, these effects will be

rotational isomeric state scheme, and that of the head rath%Fnall. They will also have little effect on the stability of the
no other assumption than that of mean-field theory. In agre g/otropic phases relative to one another. Theref_o re we are
' %opeful that our approach, having demonstrated its utility in

m\?grttgg_taei;ggggigtz I;Vrieflllg(rj F}Egtseaoggﬂzt'ggo;r?rr]zr:gggpturing the effect of architectgrt_e on lipid phase 'transitiqns,
; : ill be applicable to the more difficult problem of its role in
ing the solvent content or decreasing the temperature, an\rglembrane fusion and permeability

that an increase in the length of the hydrocarbon tail or a '
decrease in the head—grou_p volume st§b|llzes the inverted- ACKNOWLEDGMENTS

hexagonal phase. The ratio of the lattice constants of the

coexisting phases is in reasonable agreement with experi- It is a pleasure to thank W. Frey, J. Seddon, I. Szleifer,
ment. However, the absolute value of the lamellar spacing iand P. Yager for stimulating conversations. Financial support
too low. This result highlights one of two limitations of our was provided by the Alexander von Humboldt Foundation
calculation; that we have greatly simplified the head groupand the National Science Foundation under Grant No.
and the solvent. We expect that this deficiency can be remDMR9531161. CRAY T3D/T3E time at the San Diego Su-
edied with more realistic parametrization of the interactionspercomputer Center is gratefully acknowledged.

[1] V. Luzatti, A. Tardieu, T. Gulik-Krzywicki, E. Rivas, and F. [16] D. W. R. Gruen, Biochim. Biophys. Act&95 161 (198J);

Reiss-Husson, Naturg.ondon 220, 485 (1968. Chem. Phys. Lipids30, 105 (1982; J. Phys. Chem89, 146

[2] P. R. Cullis, M. J. Hope, B. de Kruijff, A. J. Verkleij, and C. P. (1985.

S. Tilcock,Phospholipids and Cellular Regulatipiol. 1, ed-  [17] I. Szleifer, A. Ben-Shaul, and W. M. Gelbart, J. Chem. Phys.
ited by J. F. Kuo(CRC Press, Boca Raton, 1985 85, 5345(1986); A. Ben-Shaul, I. Szleifer, and W. M. Gelbart,

[3] J. M. Seddon and R. H. Templer, Philos. Trans. R. Soc. Lon- ibid. 83, 3597 (1985; I. Szleifer, D. Kramer, A. Ben-Shaul,

don, Ser. A344, 377 (1993. W. M. Gelbart, and S. A. Safraihid. 92, 6800(1990; D. R.

[4] J. M. Seddon, Biochim. Biophys. ActeD31, 1 (1990. Fattal and A. Ben-Shaul, Physica220 192 (1995.

[5] D. P. Siegel, Biophys. 39, 1171(1986. [18] P. J. Flory,Statistical Mechanics of Chain Moleculé#/iley-

[6] J. M. Seddon, G. Cevc, and D. Marsh, Biochemig®#y 1280 Interscience, New York, 1969 W. L. Mattice and U. W.

(1983. Suter,Conformational Theory of Large Molecules: the Rota-
[7] S. M. Gruner, J. Phys. Cherfi3, 7570(1989. tional Isomeric State Model in Macromolecular Systems
[8] G. L. Kirk and S. M. Gruner, J. Phyérance 46, 761(1985; (Wiley-Interscience, New York, 1994

G. L. Kirk, S. M. Gruner, and D. L. Stein, BiochemistBg, [19] L. Steenhuizen, D. Kramer, and A. Ben-Shaul, J. Phys. Chem.

1093(1984. 95, 7477(199)).

[9] J. Briggs and M. Caffrey, Biophys. 87, 1594 (1994). [20] For a real-space approach to this phase in polymer systems in
[10] J. Briggs, H. Chung, and M. Caffrey, J. Phys6)1723(1996. the strong-segregation limit, see H. Xi and S. T. Milner, Mac-
[11] J. Israelachvili, Intermolecular & Surface Forces2nd ed. romolecules29, 2404(1996.

(Academic, London, 1992 [21] M. W. Matsen and M. Schick, Phys. Rev. Left2, 2660

[12] G. Cevec and D. MarstPhospholipid BilayergWiley, New (19949.
York, 1987. [22] M. W. Matsen, Phys. Rev. Let?4, 4225(1995.

[13] K. Larson, J. Chem. Phy€3, 7304 (1989; D. C. Turner, [23] M. Miiller and M. Schick, Macromoleculex7, 8900(1996.
Z.-G. Wang, S. M. Gruner, D. A. Mannock, and R. N. McEl- [24] S. T. Hyde and S. Andersson, Z. Kristallog68 213 (1984);
haney, J. Phys. 12, 2039(1992. K. Larsson, NaturéLondon) 304, 664(1983; W. Longley and

[14] H. Heller, M. Schaefer, and K. Schulten, J. Phys. Chei. J. Mclntosh,ibid. 303 612 (1983.

8343(1993; K. V. Damodaran and K. M. Merz, Biophys. J. [25] J. M. Seddon, G. Cevc, R. D. Kaye, and D. Marsh, Biochem-
66, 1076 (1994; D. P. Tieleman and H. J. C. Berendsen, J. istry 23, 2634(1984.
Chem. Phys105 4871(1996. [26] F. A. M. Leermakers and J. M. H. M. Scheutjens, J. Chem.

[15] S. Marcelja, Biochim. Biophys. Acta67, 165 (1974. Phys.89, 3264(1988.



